本所声明  |  联系方式  |  中国科学院  |  数字认证(OA)   |  ARP  |  English  |  邮箱

9月9日学术报告

来源: 发布时间:2010-09-02【字体:

报告:Interband Cascade Lasers: from concept to devices and applications

报告人:杨瑞青教授

单位:美国俄克拉荷马大学(University of Oklahoma)

时间:9月9日(周四)上午9:30—10:30

地点:缘园  溢智厅

 

报告内容摘要:

 

Interband Cascade Lasers: from concept to devices and applications

 

Rui Q. Yang

School of Electrical and Computer Engineering, University of Oklahoma (OU), Norman, OK

 

Interband cascade (IC) lasers take advantage of the broken band-gap alignment in type-II quantum wells to reuse injected electrons in cascade stages for photon generation with high quantum efficiency and represent a relatively new class of mid-infrared light sources. Unlike intraband quantum cascade lasers, IC lasers use interband transitions for photon emission without involving fast phonon scattering, making it possible to significantly lower the threshold current density. IC lasers are designed entirely based on quantum mechanics and grown by advanced technology such as molecular beam epitaxy (MBE). IC lasers offer a wide wavelength tailoring range without being limited by the conduction-band offset in the wavelength region of 3-4 micron where there are hydrocarbon signatures important for life detection in space exploration. Since the proposal of IC lasers in 1994 and the first demonstration in 1997, significant progress has been achieved toward high-performance mid-IR laser devices. Some outstanding performance features such as low threshold current densities (e.g. <2 A/cm2 at 80 K, <400A/cm2 at 300K) and high cw wall-plug efficiency (e.g. >31% at 80 K) partially verified the advantages of IC lasers. Single-mode distributed feedback (DFB) IC lasers have been demonstrated in cw operation for the wavelength range from ~3.2 to 3.6 μm. These DFB IC lasers have been employed for the detection of gases such as methane (CH4), Ethane (C2H6), hydrogen chloride (HCl), and formaldehyde (H2CO), and have been flown on aircraft and high-altitude balloon instruments and measured atmospheric CH4 and HCl profiles. Also, single-mode cw DFB IC lasers have been integrated with TE coolers in a compact butterfly-like package operating at room temperature, which have been delivered for NASA flight mission to Mars. In 2008, cw operation of IC lasers was demonstrated above room temperature (up to 319K) near 3.7 mm with low power consumption (<0.6 W at 300K), exceeding the important milestone of IC laser development, namely room temperature cw operation. Recently, we have extended the efficient IC lasers into the longer wavelength region (>7 mm) based on plasmon waveguides. In this talk, the development of mid-infrared IC lasers from concept to devices and applications will be reviewed. Their current status and future prospects will be discussed. If time permits, our recent results of photovoltaic devices using IC structures will be presented.

 

报告人简介:

Rui Q. Yang received the B.Sc. degree in physics from Zhejiang University in 1982, and the M.Sc. and Ph.D. degrees in physics from Nanjing University in 1984 and 1987, respectively. He is the inventor of interband cascade lasers with research activities ranging from condensed matter physics to semiconductor quantum devices such as tunneling diodes, mid-infrared lasers and detectors. Prior to joining OU as a professor in 2007, he was a Principal Member of Engineering Staff and a Task Manager at the Jet Propulsion Laboratory (JPL) in California, where he led the development of advanced mid-IR IC lasers for applications in Earth sciences and planetary explorations. He received the Edward Stone Award in 2007 from JPL for outstanding research publication and the successful accelerated infusion of cutting-edge interband cascade semiconductor laser technology into flight mission readiness


附件下载: