中国科学院上海光学精密机械研究所(简称:上海光机所)成立于1964年5月,是我国建立最早、规模最大的激光科学技术专业研究所。发展至今,已形成以探索现代光学重大基础及应用基础前沿、发展大型激光工程技术并开拓激光与光电子高技术应用为重点的综合性研究所。研究...
截至2022年11月,上海光机所共有在职职工922人(其中高级技术职称人员462人),包括两院院士7人、发展中国家科学院院士2人、重点研发计划首席科学家9位、国家重大专项副总设计师1人、国家重大专项总体专家组成员9人、国家杰出青年基金获得者5人、国家优秀青年基金获得者5人、1个团队连续获得2项国家基金委创新研究群体支持、百千万国家级人才工程入选者2人、国家特支计划领军人才入选者6人、国家特支计划青年拔尖人才入选者4人、中青年科技创新领军人才6人、中国青年科技奖(特别奖)1人、博士后创新人才支持计划1人、博士后国际交流计划引进项目1人;4个项目入选中科院创新交叉团队、中国科学院“关键技术人才”11人、中科院产研人才项目入选者1人、中科院青年创新促进会优秀会员15人、中科院青年创新促进会会员56人、6人获中科院特别研究助理项目资助;上海市领军人才培养计划入选者8人……
中国科学院上海光学精密机械研究所(简称中科院上海光机所)是我国建立最早、规模最大的激光专业研究所,成立于1964年,现已发展成为以探索现代光学重大基础及应用基础前沿研究、发展大型激光工程技术并开拓激光与光电子高技术应用为重点的综合性研究...
上海光机所国际合作工作始终围绕上海光机所的主责主业,以服务重大任务和国家需求为牵引,强化目标导向,注重内外集成协同,加强重大国际合作任务的谋划。坚持“战略布局,需求牵引,技术引领,合作共赢”的原则,基于科技部授予的国家国际科技合作基地及本单位学科技术优势,围绕“一带一路”国家倡议,深化拓展与发达国家实质性合作,夯实海外机构建设,积极培育和发起国际大科学计划,加强国际组织任职推荐,组织相关国际会议等,汇聚各类国际人才,建立以“平台-人才-项目-组织”合作模式,融入全球创新合作网络,助力上海光机所成为国际一流科研机构。
上海光机所国际合作一直得到所领导的高度重视,历届所长亲自主管国际合作。1972年,上海光机所接待诺贝尔奖的美籍华裔科学家杨振宁,标志着我所第一次对外开放。2007年,被科技部首批授予“科技部国际科技合作基地”。2016年,科技部首次对全国2006-2008年间认定的113家国际合作基地进行了评估,上海光机所获评“优秀”。2021年,科技部首次对全国719家国际合作基地进行了评估,上海光机所持续获评“优秀”。王岐山副主席到上海光机所视察时,对上海光机所近几年取得的系列科技成果,以及重大国际合作项目“...
近年来,上海光机所贯彻落实国家长三角一体化发展战略,积极推动产学研合作与科技成果转化,与地方先后共建南京先进激光技术研究院、上海先进激光技术创新中心、杭州光学精密机械研究所等科技成果转化基地,初步形成长三角一体化科技创新与成果转化格局,促进创新链与产业链紧密融合,服务地方经济高质量发展。
南京先进激光技术研究院:聚焦于激光领域的产业技术研发及科技成果转化,建成江苏省激光智能制造工程研究中心及全固态激光技术、激光装备及工艺、激光检测仪器等研发中心,入选科技部国家专业化众创空间示范名 ...
作为我国建立最早、规模最大的激光科学技术专业研究所,和首批上海市科普教育基地之一,中科院上海光机所在致力于科技创新的同时,十分重视科普工作。多年来,上海光机所借助科研院所强大的科普资源优势,围绕光学与激光科学技术,积极开展公众开放日、科普讲座、科技课堂、科普作品创作等在内的系列科普工作,获得...
超强激光科学卓越创新简报
(第三百二十三期)
2022年11月24日
上海光机所在超强涡旋激光驱动等离子体棱镜准直加速质子束方面取得进展
近期,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室在超强涡旋激光驱动等离子体棱镜实现高效聚束质子加速方面取得进展,相关成果以Collimated particle acceleration by vortex laser-induced self-structured “plasma lens”为题,在Applied Physics Letters上发表。
获得小发散角、高准直度的质子束一直是激光驱动粒子加速应用领域的难题。为了解决这一难题,科学家们已经提出使用结构靶、级联加速、磁四极铁等方案来实现对高能离子的调控,本质上这些方法是在横向上提供了一种“电棱镜”或“磁棱镜”来聚束高能离子束,其靶的构型复杂、造价昂贵,并且对多束激光精准时空同步等有着苛刻的要求。针对于质子医疗、中子产生、核反应等应用所需的高重频PW、甚至10PW激光驱动的高重频质子源,迫切需要找到一种简易的、能够降低实验要求的方案。
超强拉盖尔-高斯(LG)激光为我们提供了一种获得重频质子源的有效方法。研究团队发现:利用单束环形LG激光的预脉冲和主脉冲与最简单的平面薄膜靶作用可以“自恰”形成凹面等离子体膨胀,进而在靶后鞘场法向加速机制中实现凹面鞘场对质子束的法向汇聚加速(发散角为2.7°),仅为传统高斯激光驱动质子加速情况的1/10,同时质子束的最高截止能量可提高约50%,该项机制为将来高重频PW激光驱动高重频质子源的广泛应用提供了一种可行有效的方法。
该项成果是研究团队在理论上提出新型光镊——相对论涡旋刀(Physical Review Letters 122, 024801 (2019))和在实验上获得世界最强LG激光产生(Physical Review Letters 125, 034801 (2020))的工作基础上,对超强LG激光应用的进一步开拓,具有广泛的应用价值。
相关的研究工作得到了国家自然科学基金面上项目、上海自然科学基金面上项目、中科院原始创新0到1项目等项目的支持。
图1 (a)高斯激光和LG激光的光强分布。(b)LG激光聚束质子加速示意图。
图2 高斯激光驱动质子发散场和LG激光驱动会聚场分布对比。
copyright 2000- 中国科学院上海光学精密机械研究所 沪ICP备05015387号-1
主办:中国科学院上海光学精密机械研究所 上海市嘉定区清河路390号(201800)
转载本站信息,请注明信息来源和链接。