中国科学院上海光学精密机械研究所(简称:上海光机所)成立于1964年5月,是我国建立最早、规模最大的激光科学技术专业研究所。发展至今,已形成以探索现代光学重大基础及应用基础前沿、发展大型激光工程技术并开拓激光与光电子高技术应用为重点的综合性研究所。研究...
截至2022年11月,上海光机所共有在职职工922人(其中高级技术职称人员462人),包括两院院士7人、发展中国家科学院院士2人、重点研发计划首席科学家9位、国家重大专项副总设计师1人、国家重大专项总体专家组成员9人、国家杰出青年基金获得者5人、国家优秀青年基金获得者5人、1个团队连续获得2项国家基金委创新研究群体支持、百千万国家级人才工程入选者2人、国家特支计划领军人才入选者6人、国家特支计划青年拔尖人才入选者4人、中青年科技创新领军人才6人、中国青年科技奖(特别奖)1人、博士后创新人才支持计划1人、博士后国际交流计划引进项目1人;4个项目入选中国科学院创新交叉团队、中国科学院“关键技术人才”11人、中国科学院产研人才项目入选者1人、中国科学院青年创新促进会优秀会员15人、中国科学院青年创新促进会会员56人、6人获中国科学院特别研究助理项目资助;上海市领军人才培养计划入选者8人……
中国科学院上海光学精密机械研究所(简称:上海光机所)是我国建立最早、规模最大的激光专业研究所,成立于1964年,现已发展成为以探索现代光学重大基础及应用基础前沿研究、发展大型激光工程技术并开拓激光与光电子高技术应用为重点的综合性研究所。重...
上海光机所国际合作工作始终围绕上海光机所的主责主业,以服务重大任务和国家需求为牵引,强化目标导向,注重内外集成协同,加强重大国际合作任务的谋划。坚持“战略布局,需求牵引,技术引领,合作共赢”的原则,基于科技部授予的国家国际科技合作基地及本单位学科技术优势,围绕“一带一路”国家倡议,深化拓展与发达国家实质性合作,夯实海外机构建设,积极培育和发起国际大科学计划,加强国际组织任职推荐,组织相关国际会议等,汇聚各类国际人才,建立以“平台-人才-项目-组织”合作模式,融入全球创新合作网络,助力上海光机所成为国际一流科研机构。
上海光机所国际合作一直得到所领导的高度重视,历届所长亲自主管国际合作。1972年,上海光机所接待诺贝尔奖的美籍华裔科学家杨振宁,标志着我所第一次对外开放。2007年,被科技部首批授予“科技部国际科技合作基地”。2016年,科技部首次对全国2006-2008年间认定的113家国际合作基地进行了评估,上海光机所获评“优秀”。2021年,科技部首次对全国719家国际合作基地进行了评估,上海光机所持续获评“优秀”。王岐山副主席到上海光机所视察时,对上海光机所近几年取得的系列科技成果,以及重大国际合作项目“中以...
近年来,上海光机所贯彻落实国家长三角一体化发展战略,积极推动产学研合作与科技成果转化,与地方先后共建南京先进激光技术研究院、上海先进激光技术创新中心、杭州光学精密机械研究所等科技成果转化基地,初步形成长三角一体化科技创新与成果转化格局,促进创新链与产业链紧密融合,服务地方经济高质量发展。 南京先进激光技术研究院:聚焦于激光领域的产业技术研发及科技成果转化,建成江苏省激光智能制造工程研究中心及全固态激光技术、激光装备及工艺、激光检测仪器等研发中心,入选科技部国家专业化众创空间示范名 单,...
作为我国建立最早、规模最大的激光科学技术专业研究所,和首批上海市科普教育基地之一,中国科学院上海光学精密机械研究所(简称:上海光机所)在致力于科技创新的同时,十分重视科普工作。多年来,上海光机所借助科研院所强大的科普资源优势,围绕光学与激光科学技术,积极开展公众开放日、科普讲座、科技课堂、科普作品创...
超强激光科学卓越创新简报
(第三百七十八期)
2023年4月18日
上海光机所在高精度、大规模光电并行矩阵计算系统方面取得进展
近期,中国科学院上海光学精密机械研究所光芯片集成研发中心、信息光学实验室团队与暨南大学合作,提出了一种基于衍射分束器件实现高精度、大规模光电并行矩阵计算加速器的新型架构—光学多成像投影架构(Optical Multi-Imaging-casting architecture,OMica)。这种新型架构可以实现光学矩阵卷积、矢量矩阵积以及矩阵乘法等真正意义上的并行计算,有望在面向专用目的的大规模矩阵并行计算加速方面取得应用。
现如今人类社会已经进入以人工智能、物联网等为代表的大数据时代,对信息处理与计算的需求急剧增长。为了有效解决当前的算力困境,亟需寻找具有持续算力增长空间的新型计算范式与架构。目前,如何解决算力困境已形成了三条基本路线,分别是More-Moore、More-than-Moore和Beyond CMOS。其中,光学以其高并行、高能效比、高速度和无电磁干扰等优点成为一种具有革命性的Beyond CMOS路线,其在构建面向专用目的的大规模矩阵并行计算系统方面有天然优势。
目前主流的光电计算架构可以大致分为平面集成式和自由空间互连式两类。其中,平面集成式光电计算只能实现一维矢量-矩阵乘法,且受限于光子单元器件的集成度难以实现算力拓展,而自由空间互连式光电计算天然具备调控数以百万像素的能力而有望实现更高算力。研究人员创造性地利用高质量分束元件—达曼光栅,成功构建了可以实现大规模、高精度的光学矩阵计算架构,并在此基础上实现了计算精度约为8bits的10*10、20*20大小的矩阵卷积[1]。在此基础上,研究人员进一步研究了时、空间序列编码方式以实现负数和复数运算,并基于空间序列编码方法实现了光学卷积神经网络的推理任务。研究人员进一步优化了182*224分束比的达曼光栅,初步验证了大规模光学矩阵卷积。此外,基于该计算架构,研究人员提出了一种可实现多通道矢量矩阵积,即矩阵乘法的光学实现架构,并成功演示了8×4和4×8矩阵乘法的并行计算加速[2]。
这种OMica架构计算加速器可以在白光照明条件下工作,有望实现对真实自然场景光学图像的直接处理,从而突破至少在输入端的光-电-光转换瓶颈。同时,该架构可以通过平板波导光学系统进一步集成并有望在图像数据处理、机器视觉、目标识别等场景中专用目的计算加速方面得到实际应用。
该研究得到中国科学院、上海市科委、上海精密光学制造与测试服务平台等项目的资助。
原文链接
copyright 2000- 中国科学院上海光学精密机械研究所 沪ICP备05015387号-1
主办:中国科学院上海光学精密机械研究所 上海市嘉定区清河路390号(201800)
转载本站信息,请注明信息来源和链接。
沪公网安备
31011402010030号